69 research outputs found

    Sensitivity analysis of the solar rotation to helioseismic data from GONG, GOLF and MDI observations

    Full text link
    Accurate determination of the rotation rate in the radiative zone of the sun from helioseismic observations requires rotational frequency splittings of exceptional quality as well as reliable inversion techniques. We present here inferences based on mode parameters calculated from 2088-days long MDI, GONG and GOLF time series that were fitted to estimate very low frequency rotational splittings (nu < 1.7 mHz). These low frequency modes provide data of exceptional quality, since the width of the mode peaks is much smaller than the rotational splitting and hence it is much easier to separate the rotational splittings from the effects caused by the finite lifetime and the stochastic excitation of the modes. We also have implemented a new inversion methodology that allows us to infer the rotation rate of the radiative interior from mode sets that span l=1 to 25. Our results are compatible with the sun rotating like a rigid solid in most of the radiative zone and slowing down in the core (R_sun < 0.2). A resolution analysis of the inversion was carried out for the solar rotation inverse problem. This analysis effectively establishes a direct relationship between the mode set included in the inversion and the sensitivity and information content of the resulting inferences. We show that such an approach allows us to determine the effect of adding low frequency and low degree p-modes, high frequency and low degree p-modes, as well as some g-modes on the derived rotation rate in the solar radiative zone, and in particular the solar core. We conclude that the level of uncertainties that is needed to infer the dynamical conditions in the core when only p-modes are included is unlikely to be reached in the near future, and hence sustained efforts are needed towards the detection and characterization of g-modes.Comment: Accepted for publication in Astrophysical journal. 15 pages, 19 figure

    On The Determination of MDI High-Degree Mode Frequencies

    Full text link
    The characteristic of the solar acoustic spectrum is such that mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases for a given order. A direct consequence of this property is that individual p-modes are only resolved at low and intermediate degrees, and that at high degrees, individual modes blend into ridges. Once modes have blended into ridges, the power distribution of the ridge defines the ridge central frequency and it will mask the true underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present the results of fitting high degree power ridges (up to l = 900) computed from several two to three-month-long time-series of full-disk observations taken with the Michelson Doppler Imager (MDI) on-board the Solar and Heliospheric Observatory between 1996 and 1999. We also present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than some ad hoc correction scheme) resulting in a methodology that can produce an unbiased determination of high-degree modes, once the instrumental characteristics are well understood. Finally, we present changes in high degree mode parameters with epoch and thus solar activity level and discuss their significance.Comment: 59 pages, 38 figures -- High-resolution version at http://www-sgk.harvard.edu:1080/~sylvain/preprints/ -- Manuscript submitted to Ap

    An Upper Limit on the Temporal Variations of the Solar Interior Stratification

    Get PDF
    We have analyzed changes in the acoustic oscillation eigenfrequencies measured over the past 7 years by the GONG, MDI and LOWL instruments. The observations span the period from 1994 to 2001 that corresponds to half a solar cycle, from minimum to maximum solar activity. These data were inverted to look for a signature of the activity cycle on the solar stratification. A one-dimensional structure inversion was carried out to map the temporal variation of the radial distribution of the sound speed at the boundary between the radiative and convective zones. Such variation could indicate the presence of a toroidal magnetic field anchored in this region. We found no systematic variation with time of the stratification at the base of the convection zone. However we can set an upper limit to any fractional change of the sound speed at the level of 3×1053 \times 10^{-5}.Comment: 11 pages, 5 figures, to appear in Ap

    An Upper Limit on the Reflected Light from the Planet Orbiting the Star tau Bootis

    Get PDF
    The planet orbiting tau Boo at a separation of 0.046 AU could produce a reflected light flux as bright as 1e-4 relative to that of the star. A spectrum of the system will contain a reflected light component which varies in amplitude and Doppler-shift as the planet orbits the star. Assuming the secondary spectrum is primarily the reflected stellar spectrum, we can limit the relative reflected light flux to be less than 5e-5. This implies an upper limit of 0.3 for the planetary geometric albedo near 480 nm, assuming a planetary radius of 1.2 R_Jup. This albedo is significantly less than that of any of the giant planets of the solar system, and is not consistent with certain published theoretical predictions.Comment: 5 pages, 1 figure, accepted by ApJ Letter

    A High-Eccentricity Low-Mass Companion to HD 89744

    Full text link
    HD 89744 is an F7 V star with mass 1.4 M, effective temperature 6166 K, age 2.0 Gy and metallicity [Fe/H]= 0.18. The radial velocity of the star has been monitored with the AFOE spectrograph at the Whipple Observatory since 1996, and evidence has been found for a low mass companion. The data were complemented by additional data from the Hamilton spectrograph at Lick Observatory during the companion's periastron passage in fall 1999. As a result, we have determined the star's orbital wobble to have period P = 256 d, orbital amplitude K = 257 m/s, and eccentricity e = 0.7. From the stellar mass we infer that the companion has minimum mass m2 sin i = 7.2 MJup in an orbit with semi-major axis a2 = 0.88 AU. The eccentricity of the orbit, among the highest known for extra-solar planets, continues the trend that extra-solar planets with semi-major axes greater than about 0.15 AU tend to have much higher eccentricities than are found in our solar system. The high metallicity of the parent star reinforces the trend that parent stars of extra-solar planets tend to have high metallicityComment: AASTEX-LateX v5.0, 7 pages w/ 3 figures, to be published in ApJ

    How much do helioseismological inferences depend upon the assumed reference model?

    Get PDF
    We investigate systematic uncertainties in determining the profiles of the solar sound speed, density, and adiabatic index by helioseismological techniques. We find that rms uncertainties-averaged over the sun of ~ 0.2%-0.4% are contributed to the sound speed profile by each of three sources: 1)the choice of assumed reference model, 2) the width of the inversion kernel, and 3) the measurements errors. The density profile is about an order of magnitude less well determined by the helioseismological measurements. The profile of the adiabatic index is determined to an accuracy of about 0.2% . We find that even relatively crude reference models yield reasonably accurate solar parameters.Comment: Accepted for publication in ApJ . Related material at http://www.sns.ias.edu/~jn

    A New Spectroscopic and Photometric Analysis of the Transiting Planet Systems TrES-3 and TrES-4

    Get PDF
    We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H] =0.19±0.08= -0.19\pm 0.08, Teff=5650±75T_\mathrm{eff} = 5650\pm 75 K, and logg=4.4±0.1\log g = 4.4\pm 0.1 for TrES-3, and [Fe/H] =+0.14±0.09= +0.14\pm 0.09, Teff=6200±75T_\mathrm{eff} = 6200\pm 75 K, and logg=4.0±0.1\log g = 4.0\pm0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial-velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. We have redetermined the stellar parameters taking advantage of the strong constraint provided by the light curves in the form of the normalized separation a/Ra/R_\star (related to the stellar density) in conjunction with our new temperatures and metallicities. The masses and radii we derive are M_\star=0.928_{-0.048}^{+0.028} M_{\sun},R_\star = 0.829_{-0.022}^{+0.015} R_{\sun}, and M_\star = 1.404_{-0.134}^{+0.066} M_{\sun}, R_\star=1.846_{-0.087}^{+0.096} R_{\sun} for TrES-3 and TrES-4, respectively. With these revised stellar parameters we obtain improved values for the planetary masses and radii. We find Mp=1.9100.080+0.075MJupM_p = 1.910_{-0.080}^{+0.075} M_\mathrm{Jup}, Rp=1.3360.036+0.031RJupR_p=1.336_{-0.036}^{+0.031} R_\mathrm{Jup} for TrES-3, and Mp=0.925±0.082MJupM_p=0.925 \pm 0.082 M_\mathrm{Jup}, Rp=1.7830.086+0.093RJupR_p=1.783_{-0.086}^{+0.093} R_\mathrm{Jup} for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters.Comment: 42 pages, 10 tables, 8 figures. Accepted for publication in the Astrophysical Journa

    The SOI-MDI high-latitude jet: the evidence for and against

    Get PDF
    The apparent detection of a prograde jet at latitude 75° and at a radius of about 0.95R⊙ in some inversions of rotation data from SOI--MDI (Schou et al., 1998) has excited considerable interest, but whether the jet really exists in the solar interior is certainly not yet firmly established. The detection of the feature is sensitive both to the inversion techniques used and to the methods of mode parameter estimation used to generate the input data. In particular, the feature is much more apparent in Regularized Least-Squares inversions than in inversions using an Optimally Localized Average approach, and is not detected at all in the present GONG data when analysed with the GONG peakfinding algorithm, or indeed in SOI data when analysed with the GONG algorithm. Therefore in this poster we examine critically the current evidence for the source and existence of this jet in the light of forward and inverse analyses
    corecore